Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 509
Filter
1.
J Am Chem Soc ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602511

ABSTRACT

Meroterpenoid clavilactones feature a unique benzo-fused ten-membered carbocyclic ring unit with an α,ß-epoxy-γ-lactone moiety, forming an intriguing 10/5/3 tricyclic nested skeleton. These compounds are good inhibitors of the tyrosine kinase, attracting a lot of chemical synthesis studies. However, the natural enzymes involved in the formation of the 10/5/3 tricyclic nested skeleton remain unexplored. Here, we identified a gene cluster responsible for the biosynthesis of clavilactone A in the basidiomycetous fungus Clitocybe clavipes. We showed that a key cytochrome P450 monooxygenase ClaR catalyzes the diradical coupling reaction between the intramolecular hydroquinone and allyl moieties to form the benzo-fused ten-membered carbocyclic ring unit, followed by the P450 ClaT that exquisitely and stereoselectively assembles the α,ß-epoxy-γ-lactone moiety in clavilactone biosynthesis. ClaR unprecedentedly acts as a macrocyclase to catalyze the oxidative cyclization of the isopentenyl to the nonterpenoid moieties to form the benzo-fused macrocycle, and a multifunctional P450 ClaT catalyzes a ten-electron oxidation to accomplish the biosynthesis of the 10/5/3 tricyclic nested skeleton in clavilactones. Our findings establish the foundation for the efficient production of clavilactones using synthetic biology approaches and provide the mechanistic insights into the macrocycle formation in the biosynthesis of fungal meroterpenoids.

2.
Arthrosc Tech ; 13(3): 102889, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38584626

ABSTRACT

The anterior cruciate ligament (ACL) is the primary soft-tissue structure for anterior stabilization of the knee and is one of the most frequently injured structures. The incidence of ACL injuries in children and adolescents ranges from 92 to 151 per 100,000 person-years. The choice of surgical treatment for this population group is controversial, with a widespread concern that adult reconstruction techniques may damage the epiphyseal plate, compromise growth, or cause deformity. In this article, we describe a physeal-sparing, all-inside ACL reconstruction technique for skeletally immature patients. This technique is supported by retrograde drilling of the femoral tunnel and retrograde drilling of the tibial tunnel, both of which are able to avoid the epiphyseal growth line. Fixation of the quadrupled semitendinosus autograft and suture tape augmentation are achieved by soft-tissue buttons on the femur and tibia. The surgical details of this reproducible reconstruction technique are elaborated.

3.
J Forensic Sci ; 69(3): 856-868, 2024 May.
Article in English | MEDLINE | ID: mdl-38491780

ABSTRACT

Fingerprints hold evidential value for individual identification; a sensitive, efficient, and convenient method for visualizing latent fingermarks (LFMs) is of great importance in the field of crime scene investigation. In this study, we proposed an aggregation-induced emission atomization technique (AIE-AT) to obtain high-quality fingermark images. Six volunteers made over 1566 fingerprint samples on 17 different objects. The quality of fingermark development was evaluated using grayscale analysis for quantitative assessment, combining the fluency of fingermark ridges and the degree of level 2 and level 3 features. Both qualitative and quantitative methods were employed to explore the effectiveness of AIE molecule C27H19N3SO in developing fingermarks, its applicability to objects, and its individual selectivity. Additionally, the stability of the AIE molecule was examined. Comparative experimental results demonstrated the high stability of the AIE molecule, making it suitable for long-term preservation. The grayscale ratio of the ridges and furrows was at least 2, with high brightness contrast, the level 2 and level 3 features were clearly observable. The AIE-AT proved to be effective for developing fingermarks on nonporous, porous, and semiporous objects. It exhibited low selectivity on suspects who leave fingermarks and showed better development effects on challenging objects, as well as efficient extraction capability for in situ fingermarks. In summary, AIE-AT can efficiently develop latent fingermarks on common objects and even challenging ones. It locates the latent fingermarks for further accurate extraction of touch exfoliated cells in situ, providing technical support for the visualization of fingermarks and the localization for extraction of touch DNA.


Subject(s)
Dermatoglyphics , Humans , Surface Properties , Image Processing, Computer-Assisted
4.
Front Pharmacol ; 15: 1308655, 2024.
Article in English | MEDLINE | ID: mdl-38449808

ABSTRACT

Objective: Psoralea corylifolia L. (FP) has received increasing attention due to its potential hepatotoxicity. Methods: In this study, zebrafish were treated with different concentrations of an aqueous extract of FP (AEFP; 40, 50, or 60 µg/mL), and the hepatotoxic effects of tonicity were determined by the mortality rate, liver morphology, fluorescence area and intensity of the liver, biochemical indices, and pathological tissue staining. The mRNA expression of target genes in the bile acid metabolic signaling pathway and lipid metabolic pathway was detected by qPCR, and the mechanism of toxicity was initially investigated. AEFP (50 µg/mL) was administered in combination with FXR or a peroxisome proliferator-activated receptor α (PPARα) agonist/inhibitor to further define the target of toxicity. Results: Experiments on toxic effects showed that, compared with no treatment, AEFP administration resulted in liver atrophy, a smaller fluorescence area in the liver, and a lower fluorescence intensity (p < 0.05); alanine transaminase (ALT), aspartate transaminase (AST), and γ-GT levels were significantly elevated in zebrafish (p < 0.01), and TBA, TBIL, total cholesterol (TC), TG, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were elevated to different degrees (p < 0.05); and increased lipid droplets in the liver appeared as fatty deposits. Molecular biological validation revealed that AEFP inhibited the expression of the FXR gene, causing an increase in the expression of the downstream genes SHP, CYP7A1, CYP8B1, BSEP, MRP2, NTCP, peroxisome proliferator-activated receptor γ (PPARγ), ME-1, SCD-1, lipoprotein lipase (LPL), CPT-1, and CPT-2 and a decrease in the expression of PPARα (p < 0.05). Conclusion: This study demonstrated that tonic acid extracts are hepatotoxic to zebrafish through the inhibition of FXR and PPARα expression, thereby causing bile acid and lipid metabolism disorders.

6.
Medicine (Baltimore) ; 103(7): e36482, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363894

ABSTRACT

The purpose of this study was to reveal the current trends and preferences of Chinese orthopedic surgeons regarding anterior cruciate ligament (ACL) reconstruction through a nationwide web-based survey conducted in China. The survey questionnaire was distributed via WeChat to the chairmen of provincial orthopedic and sports medicine organizing committees in China, who then shared it in their respective WeChat workgroups. The questionnaire consisted of 52 multiple-choice questions covering 8 sections. Data collection was implemented by Questionnaire Star. A total of 812 valid questionnaires were returned: 94.21% of the respondents preferred single-bundle reconstruction of ACL, while 61.70% preferred autogenous semitendinosus plus gracilis reconstruction; 76.35% of the respondents preferred establishing the femoral tunnel first, while 47.29% preferred establishing the femoral tunnel through a medial auxiliary approach; and 85.10% of the respondents recommended patients to undergo surgery within 3 months after ligament injury. Besides, the vast majority of respondents chose to retain the ligamentous remnant bundle (92.98%) and recommended routine use of knee braces postoperatively (94.09%). It is recommended to perform arthroscopic single-bundle ACL reconstruction with the remnant preserving technique using a hamstring autograft within 3 months of ACL rupture, with support of postoperative functional braces.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Orthopedic Surgeons , Humans , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/surgery , Surveys and Questionnaires , Anterior Cruciate Ligament Reconstruction/methods
7.
Arthrosc Tech ; 13(1): 102822, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38312872

ABSTRACT

Massive rotator cuff tears are a huge challenge for orthopaedic surgeons, as the patients may be in need of multiple operations, even including reverse total shoulder arthroplasty. The various repair methods for the rotator cuff, such as partial rotator cuff repair, patch-augmented rotator cuff repair, bridging rotator cuff reconstruction with graft interposition, tendon transfer, and superior capsular reconstruction, have always been the focus of research. During surgical intervention for failed rotator cuff repairs, complexity of tears, poor tissue quality, retained hardware, and adhesions are the problems routinely encountered. In this Technical Note, we describe the technique of interposition grafting using fascia lata autograft to reconstruct the rotator cuff after failed primary repair.

8.
J Environ Manage ; 354: 120331, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38368808

ABSTRACT

Pathogens are ubiquitously detected in various natural and engineered water systems, posing potential threats to public health. However, it remains unclear which human-accessible waters are hotspots for pathogens, how pathogens transmit to these waters, and what level of health risk associated with pathogens in these environments. This review collaboratively focuses and summarizes the contamination levels of pathogens on the 5 water systems accessible to humans (natural water, drinking water, recreational water, wastewater, and reclaimed water). Then, we showcase the pathways, influencing factors and simulation models of pathogens transmission and survival. Further, we compare the health risk levels of various pathogens through Quantitative Microbial Risk Assessment (QMRA), and assess the limitations of water-associated QMRA application. Pathogen levels in wastewater are consistently higher than in other water systems, with no significant variation for Cryptosporidium spp. among five water systems. Hydraulic conditions primarily govern the transmission of pathogens into human-accessible waters, while environmental factors such as temperature impact pathogens survival. The median and mean values of computed public health risk levels posed by pathogens consistently surpass safety thresholds, particularly in the context of recreational waters. Despite the highest pathogens levels found in wastewater, the calculated health risk is significantly lower than in other water systems. Except pathogens concentration, variables like the exposure mode, extent, and frequency are also crucial factors influencing the public health risk in water systems. This review shares valuable insights to the more accurate assessment and comprehensive management of public health risk in human-accessible water environments.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Drinking Water , Humans , Wastewater , Computer Simulation , Risk Assessment , Water Microbiology
9.
Environ Pollut ; 344: 123326, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38195026

ABSTRACT

Suitable operating parameters are one of the key factors to efficient and stable biological wastewater treatment of N, N-dimethylformamide (DMF) wastewater. In this study, an improved AnSBR-ASBR reactor (anaerobic sequencing batch reactor, AnSBR, and aerobic SBR, ASBR, run in series) was used to investigated the effects of operating conditions such as hydraulic residence time (HRT), AnSBR stirring speed and ASBR dissolved oxygen (DO) for DMF wastewater treatment. When HRT decreased from 24 h to 12 h, the average removal rates of COD by the AnSBR were 34.59% and 39.54%, respectively. Meanwhile, the removal rate of NH4+-N by ASBR decreased from 88.38% to 62.81%. The DMF removal rate reached the best at 18 h and the expression of dehydrogenase was the highest in the AnSBR. The abundance of Megasphaera, the dominant sugar-degrading bacteria in the AnSBR, continued to decline due to the decrease of HRT. The relative abundance of Methanobacterium gradually increased to 80.2% with the decrease of HRT and that hydrotrophic methanogenesis dominated the methanogenic process. The HRT decrease promoted butyrate and pyruvate metabolism in anaerobic sludge, but the proportion of glycolysis and methane metabolism decreased. The AnSBR-ASBR reactor had the best operation performance when HRT was 18 h, AnSBR speed was 220 r/min, and ASBR DO content was 3-4 mg/L. This study provided an effective reference for the reasonable selection of operating parameters in the treatment of DMF-containing wastewater by the AnSBR-ASBR.


Subject(s)
Microbiota , Wastewater , Dimethylformamide/metabolism , Waste Disposal, Fluid , Bioreactors/microbiology , Sewage/microbiology , Anaerobiosis
10.
Chembiochem ; 25(3): e202300678, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38015421

ABSTRACT

Using myoglobin (Mb) as a model protein, we herein developed a facial approach to modifying the heme active site. A cavity was first generated in the heme distal site by F46 C mutation, and the thiol group of Cys46 was then used for covalently linked to exogenous ligands, 1H-1,2,4-triazole-3-thiol and 1-(4-hydroxyphenyl)-1H-pyrrole-2,5-dione. The engineered proteins, termed F46C-triazole Mb and F46C-phenol Mb, respectively, were characterized by X-ray crystallography, spectroscopic and stopped-flow kinetic studies. The results showed that both the heme coordination state and the protein function such as H2 O2 activation and peroxidase activity could be efficiently regulated, which suggests that this approach might be generally applied to the design of functional heme proteins.


Subject(s)
Heme , Myoglobin , Myoglobin/chemistry , Myoglobin/genetics , Myoglobin/metabolism , Catalytic Domain , Heme/chemistry , Kinetics , Protein Conformation , Sulfhydryl Compounds
11.
Phys Chem Chem Phys ; 26(2): 1077-1085, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38098362

ABSTRACT

A Cu-Fe bimetallic hydrogel (2-QF-CuFe-G) was constructed through a simple method. The 2-QF-CuFe-G metallohydrogel possesses excellent peroxidase-like activity to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. The catalytic mechanism was confirmed by the addition of •OH radical scavenger isopropyl alcohol (IPA), tert-butyl alcohol (TBA) and ˙OH trapping agent terephthalic acid (TA). Remarkably, the resultant blue ox-TMB system can be used to selectively and sensitively detect ascorbic acid (AA) with an LOD of 0.93 µM in the range of 4-36 µM through the colorimetric method. Moreover, the assay based on the 2-QF-CuFe-G metallohydrogel can be successfully applied to detect AA in fresh fruits.

12.
World J Psychiatry ; 13(11): 967-972, 2023 Nov 19.
Article in English | MEDLINE | ID: mdl-38073893

ABSTRACT

BACKGROUND: Cerebrotendinous xanthomatosis (CTX) is a rare autosomal recessive lipid-storage disorder caused by mutations in CYP27A1. Psychiatric manifestations in CTX are rare and nonspecific, and they often lead to considerable diagnostic and treatment delay. CASE SUMMARY: A 33-year-old female patient admitted to the psychiatric ward for presentation of delusions, hallucinations, and behavioral disturbance is reported. The patient presented with cholestasis, cataract, Achilles tendon xanthoma, and cerebellar signs in adulthood and with intellectual disability and learning difficulties in childhood. After the characteristic CTX findings on imaging were obtained, a pathological examination of the Achilles tendon xanthoma was refined. Re-placement therapy was then initiated after the diagnosis was clarified by genetic analysis. During hospitalization in the psychiatric ward, the nonspecific psychiatric manifestations of the patient posed difficulty in diagnosis. After the patient's history of CTX was identified, the patient was diagnosed with organic schizophrenia-like disorder, and psychotic symptoms were controlled by replacement therapy combined with antipsychotic medication. CONCLUSION: Psychiatrists should be aware of CTX, its psychiatric manifestations, and clinical features and avoid misdiagnosis of CTX for timely intervention.

13.
Langmuir ; 39(51): 19037-19047, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38096493

ABSTRACT

Reducing the contact time during the droplet impact on the surface is crucial for anti-icing, self-cleaning, and heat transfer optimization applications. This study aims to minimize the contact time by modifying the surface curvature to create an asymmetric impact process. Our experiments showed that the increase in Weber numbers (We) and the decrease in the ratio of surface diameter to droplet diameter (D*) intensify the asymmetry of the impact process, yielding four distinct rebound modes. Low asymmetry observes the liquid retract toward the central point (Rebound Modes 1 and 2), whereas high asymmetry yields a wing-like rebound (Rebound Modes 3 and 4). In Rebound Mode 1, increased asymmetry would lead to more extended contact due to the prolonged waiting period. Conversely, the reduction in contact time in Rebound Mode 2 occurs due to increased asymmetry with no waiting period. For Rebound Modes 3 and 4, the retraction time could be divided into three stages, generated by two liquid detachment modes from the surface. Analysis reveals that an increased asymmetry would reduce the retraction time during the first stage but prolong it during the third stage, with no significant effects on the second. Four correlations, each pertaining to a distinct impact mode, are proposed based on these analyses to describe the contact time concerning We and D* for droplets impacting a superhydrophobic cylindrical surface.

14.
Huan Jing Ke Xue ; 44(11): 5946-5953, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973079

ABSTRACT

The waste sector is a significant source of greenhouse gas(GHG) emissions and clarifying its emission trends and characteristics is the premise for formulating GHG emission reduction strategies. Using the IPCC inventory model, the GHG emissions from the municipal solid waste(MSW) sector in China during 2010 to 2020 were estimated. The results showed that GHG emissions increased from 42.5 Mt in 2010 to 75.3 Mt in 2019, then decreased to 72.1 Mt in 2020. MSW landfills were the main source of GHG emissions. Further, with the increase in the proportion of waste incineration, the proportion of GHG incineration increased rapidly from 16.5% in 2010 to 60.1% in 2020. In terms of regional distribution, East and South China were the regions with the highest emissions, and Guangdong, Shandong, Jiangsu, and Zhejiang were the provinces with the largest GHG emissions. Implementing MSW classification, changing the MSW disposal modes from landfilling to incineration, improving the LFG collection efficiency of landfills, and using biological functional materials as the cover soil to strengthen the methane oxidation efficiency are the main measures to achieve GHG emission reduction in waste sectors.

15.
Langmuir ; 39(37): 13371-13385, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37675482

ABSTRACT

Profiting from their slippery nature, lubricant-infused porous surfaces endow with droplets excellent mobility and consequently promise remarkable heat transfer improvement for dropwise condensation. To be a four-phase wetting system, the droplet wettability configurations and the corresponding dynamic characteristics on lubricant-infused porous surfaces are closely related to many factors, such as multiple interfacial interactions, surface features, and lubricant thickness, which keeps a long-standing challenge to promulgate the underlying physics. In this work, thermodynamically theoretical analysis and three-dimensional molecular dynamics simulations with the coarse-grained water and hexane models are carried out to explore droplet wettability and mobility on lubricant-infused porous surfaces. Combined with accessible theoretical criteria, phase diagrams of droplet configurations are constructed with a comprehensive consideration of interfacial interactions, surface structures, and lubricant thickness. Subsequently, droplet sliding and coalescence dynamics are quantitatively defined under different configurations. Finally, in terms of the promotion of dropwise condensation, a non-cloaking configuration with the encapsulated state underneath the droplet is recommended to achieve high droplet mobility owing to the low viscous drag of the lubricant and the eliminated pinning effect of the contact line. On the basis of the low oil-water and water-solid interactions, a stable lubricant layer with a relatively low thickness is suggested to construct slippery surfaces.

16.
Inorg Chem ; 62(40): 16294-16298, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37772803

ABSTRACT

It is desired to design and construct more efficient enzymes with better performance to catalyze carbene N-H insertions for the synthesis of bioactive molecules. To this end, we exploited and designed a series of human neuroglobin (Ngb) mutants. As shown in this study, a double mutant, A15C/H64G Ngb, with an additional disulfide bond and a modified heme active site, exhibited yields up to >99% and total turnover numbers up to 33000 in catalyzing the carbene N-H insertions for aromatic amine derivatives, including those with a large size such as 1-aminopyrene. Moreover, for o-phenylenediamine derivatives, they underwent two cycles of N-H insertions, followed by cyclization to form quinoxalinones, as confirmed by the X-ray crystal structures. This study suggests that Ngb can be designed into a functional carbene transferase for efficiently catalyzing carbene N-H insertion reactions with a range of substrates. It also represents the first example of the formation of quinoxalinones catalyzed by an engineered heme enzyme.

17.
Int J Biol Macromol ; 253(Pt 4): 127016, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37741485

ABSTRACT

Nonenzymatic glycation and the subsequent accumulation of advanced glycation end-products (AGEs) in proteins are factors underlying long-term pathogenesis in diabetes. The study of protein glycation is crucial for elucidating their relationship with diabetes mellitus and related disorders. This study explores the interaction between d-ribose and human myoglobin (HMb), as well as the protective effect of thymoquinone (TQ) on glycation. A time-dependent in-vitro glycation study was performed to investigate the mechanism of d-ribose-induced structural interference of HMb in the absence and presence of TQ. Spectroscopic and proteomic analysis indicated that the presence of TQ significantly reduced the total amount of AGEs while maintaining structural characteristics of HMb. 14 glycated sites on HMb were further identified via liquid chromatography-tandem mass spectrometry (LC-MS/MS) after incubation with d-ribose for 12 h, predominantly interacting with lysine residues. TQ was found to disrupt this interaction, reducing the glycated sites from 14 to 12 sites and the percentage of glycated peptides from 26.50 % to 12.97 %. Additionally, there was a significant decrease in the degree of glycation at the same sites. In summary, our findings suggest that TQ has the potential to act as an anti-glycation agent and provide a comprehensive understanding underlying the inhibition mechanism of glycation.


Subject(s)
Diabetes Mellitus , Maillard Reaction , Humans , Glycation End Products, Advanced/metabolism , Glycosylation , Ribose/chemistry , Myoglobin/metabolism , Chromatography, Liquid , Proteomics , Tandem Mass Spectrometry
18.
Environ Sci Technol ; 57(33): 12137-12152, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37578142

ABSTRACT

Microorganisms colonizing the surfaces of microplastics form a plastisphere in the environment, which captures miscellaneous substances. The plastisphere, owning to its inherently complex nature, may serve as a "Petri dish" for the development and dissemination of antibiotic resistance genes (ARGs), adding a layer of complexity in tackling the global challenge of both microplastics and ARGs. Increasing studies have drawn insights into the extent to which the proliferation of ARGs occurred in the presence of micro/nanoplastics, thereby increasing antimicrobial resistance (AMR). However, a comprehensive review is still lacking in consideration of the current increasingly scattered research focus and results. This review focuses on the spread of ARGs mediated by microplastics, especially on the challenges and perspectives on determining the contribution of microplastics to AMR. The plastisphere accumulates biotic and abiotic materials on the persistent surfaces, which, in turn, offers a preferred environment for gene exchange within and across the boundary of the plastisphere. Microplastics breaking down to smaller sizes, such as nanoscale, can possibly promote the horizontal gene transfer of ARGs as environmental stressors by inducing the overgeneration of reactive oxygen species. Additionally, we also discussed methods, especially quantitatively comparing ARG profiles among different environmental samples in this emerging field and the challenges that multidimensional parameters are in great necessity to systematically determine the antimicrobial dissemination risk in the plastisphere. Finally, based on the biological sequencing data, we offered a framework to assess the AMR risks of micro/nanoplastics and biocolonizable microparticles that leverage multidimensional AMR-associated messages, including the ARGs' abundance, mobility, and potential acquisition by pathogens.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Drug Resistance, Bacterial/genetics , Microplastics , Plastics , Gene Transfer, Horizontal
19.
Cell Stem Cell ; 30(8): 1110-1123.e9, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541214

ABSTRACT

Mechanical forces are known to be important in mammalian blastocyst formation; however, due to limited tools, specific force inputs and how they relay to first cell fate control of inner cell mass (ICM) and/or trophectoderm (TE) remain elusive. Combining in toto live imaging and various perturbation experiments, we demonstrate and measure fluid flow forces existing in the mouse blastocyst cavity and identify Klf2(Krüppel-like factor 2) as a fluid force reporter with force-responsive enhancers. Long-term live imaging and lineage reconstructions reveal that blastomeres subject to higher fluid flow forces adopt ICM cell fates. These are reinforced by internal ferrofluid-induced flow force assays. We also utilize ex vivo fluid flow force mimicking and pharmacological perturbations to confirm mechanosensing specificity. Together, we report a genetically encoded reporter for continuously monitoring fluid flow forces and cell fate decisions and provide a live imaging framework to infer force information enriched lineage landscape during development. VIDEO ABSTRACT.


Subject(s)
Blastocyst , Transcription Factors , Mice , Animals , Cell Differentiation , Transcription Factors/genetics , Embryonic Development , Cell Lineage , Mammals
20.
Bioresour Technol ; 386: 129513, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37468017

ABSTRACT

Coke used as a filler to treat imidacloprid (IMI) wastewater by both adsorption biological coupling and microbial electrolysis cells (MEC)-adsorption biological coupling technologies, the removal efficiencies on pollutions in wastewater containing IMI were investigated, and the key functional genes related to IMI degradation pathways were also revealed. Results showed that the removal rates of COD, ammonia nitrogen, TP, and IMI under the adsorption biological coupling treatment and MEC-adsorption biological coupling treatment were 94.61-95.54%, 93.37-95.79%, 73.69-83.80%, and 100%, respectively. MEC increased the relative abundance of Proteobacteria by 9.01% and transformed the dominant bacteria from Lysobacter and Reyranella to Brevundimonas and Aquincola. Moreover, MEC up-regulated the abundance of the coding genes PK (9.30%), narG (2.26%), pstS (3.63%), and phnD (1.32%), and converted the IMI degradation products to smaller molecular weight C6H8N2 and C6H6ClNO. This study provided an important reference information for efficient treatment of IMI wastewater using the MEC-adsorption biological coupling technology.


Subject(s)
Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Adsorption , Electrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...